FACILITY FORM 602

#
POPOV INEQUALITY VIA PAPAITTER PLANE

D.D. Siljak
Electrical Engineerines Department
Tmiversity of Fanta Clara
Santa Clara, California

Abstract

The paper presents a parameter plane interpreta-
tion of the Popov inequality which appears in
absolute stability analysis of nonlinear systems,
The major advantare of the proposed technique over
a conventional frequency domain interpretation of
the inequality lies in the fact that the influ-
ence of system parameters on the absolute
stability can be considered by a strairhtforward
procedure, A eeneral cormputer proeran is readily
available.

Introduction

The problem of absolute stability in a
certain class of nonlinear systems was introduced
Ly AJI. Lur'e and V.H, Tostnikov {1). Various
solutions of the problem on the basis of the
Liapunov direct method were obtained by Lur'e and
rany others [3]. The solutions are often riven
for modified and extended versions of the absolute
stebility problem wvhich is usually referred to as
the problen of Lur'e,

As distinct from the other solutions to the
Iur'e problem, V.M. Popov [3] expressed the
sufficient conditions for absolute stability in
terms of the freguence response of the linear
part of the system. This resulted in a simple
and convenient sraphical interpretation cormmen in
the linear system analysis., The Popov solution
has been “urther extended to various important
problers of nonlinear system snalysis. This
paper will be based upon the results of V,A.
Yakubovieh [U,5], Va,Z. Tsyprin and B,M, Naurcv
16,71, and F.I. Jury snd £.8, Devey (8],

In this paper, a solution of the Tur'e
problem will be eiven by reforrulatine the Topov
results in the parameter plane [9-13]. ¢fo far,
various applications of the parareter plane
method utilized the approximate methods of the
harmonic linearizetion (describine function), The
obtained results indicated a certain superiority
of the parameter plane analysis over the conven-
tional techniques. The method has been applied
recently to the problem of lur'e usine a concept
of the "complex main" [14-17]. This concept
produced some advantapes in comparison to the
frequency technique used in the Popov solution.
Another approach [18] utilized the properties
of the doublewreal«root loci [9,10] in the para-
meter plane and offered & promise to achieve new
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significeant results in solving the absolute
stability problem in the parsmeter plasne. This
approach is peneralized here and then applied to
various aspects of the absolute stability analysis
of nonlinear systems., The main advantaere of the
proposed approaech is that it offers another
dimension in the eraphical interpretation of the
Popov condition. This allows a study of the
influence of system parameters on the absolute
stability in a class of nonlinear systems. In

addition, the use of Xk and Vk function introduced

in [19]) sllows a convenient application of digital
computers to the proposed stability analysis.

The Popov Inequality

In the theorems for absolute stability based
upon the freaquency domain solution, the Popov
inequelity is essential, The form of the Popov

ianequalivy sentl

inequality varies with the problem specifications
involved, ©Several of the basic forms will be
reviewed,

In a free dynamic system, the exponential
absolute stability is based upon the inequality
{b,6,71

1

(k,q,0,w) = T+ Re(l+jqu)t{o+juw) > O (1)

for all real w > 0

where ((s) is the transfer function of the linear
part of the system,

= , D> M (2)

wmin
s

a(s) = ,E.

joo] R

and s = 0+ Juw,.

Exponential stability of the sclution in a
forced system depends on the verification of the
inequality [U]

n(k,0,w) = %-+ Re G{o+jw) > O (3)
for all real w 1.0

The oririnal Popov criterion [3] for free
dynamic systems which is related to inequality 1
when o = 0 can be improved by using the inequality

[5,8) _ -
w(k,p,q,w) = %‘+ Re(1l + sz + Jaw)e(Ju) > 0,

for all real w> O

(¥)
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In general, to achieve the absolute stabili-
ty it is necessary to choose parameters k, p, Qq,
or a system parameter in the linear part of the
system so that the corresponding inequality is
satisfied, This choice can be advantaceously
made in the parameter plane as is shown in the
following section,

Parameter Plane Analysis

To obtain the peometric interpretation of
the Popov inequality in the parameter plane, it
is necessary first to observe that the above
inequalities can be represented by

m(0,B,0,u) > O, for all real w > 0 (5)
where a and B represents a palr of variables
amongs k, P, q, Or sorme parameter in the transfer
function ¢(s) of the linear part of the syster.

If o is assurmed as constant, inequality 5
may be rewritten as

m(a,8,w) > 0, for all real w > 0 (6)
Cese (6) will be considered *irst.
Taking equality in (6), one obtains equation

m{a,8,w) = 0 (7}

which Tor a specific value of w determines =»

curve C in the parameter af-plane. "his curve

(in rost cases a strairsht line) divides the
aR-rlane into recions 7 > 0 and m < O, Then, to
deterrine the resion P(m > O)for all real w > C,
it is necessary to ccnstruct the envelcpe T of all
the curves C obtained for various values of w .
Lxistence of an envelope in this case is assured
by the fact that the transfer function {s) is a
rational function of the variable s, [20]

Assumine that en envelome exists, let “(o,B)
be the point of tansency of I with that one of the
curves C which corresponds to a certain value w .
The guantities o and 8 are unknown functions of

o

¢(w) (8)

v(w)

which satisfy equation 7. In order to determine
these functions, it is necessary tc use the fact
that the tanrents to the two curves F and C
coincide for all values of w . Then, a necessary
condition for tangency is

da g8
dw . dw
o 6B (9)

where doa/dw and dB/dw are the derivatives of the
unknown functions ¢ and y of equations 8, and da
and 8B are two quantities proportional to the
direction cosines of the tangent to the curve C.
Since w in equation T has a constant value
for the particular curve C considered, we have

om 3T _
55 Sa+sp 8= 0 (10)

which determines the tanecent to C. Again, the
two unknown functions a = ¢(w), B = ¥(w) satisfy
the ecuation 7 also, where w is now the indepen-
dent variable, Therefore,

In da am df am
Sadw T dw T e -0 (11)

or, combinine equations 7, 9, 10, and 11,

am
= = 0 (12)

m(a,B,w) = 0,
the two unknown functions o = ¢(w), R = ¢(w) are
solutions of equations 12, Hence, the ecuation
of the envelore, in case an envelope exists, is
to be found by eliminating the variszhle w from
equations 12,

Tet T(a,R) = 0 be the equation obtained by
eliminating w from (12), and let us try to
determine whether or not this ecuation represents
an envelope of the eciven curves, Tet CO be the

particular curve which corresponds to a value Wy
and let ”O(ao,ﬂo) be the point intersections

of the two curves

mla,Pyw ) = 0, = 0 (13)
o

Tor w = w_, from eauations & one has o = ¢(mo)

and R = ¢{w ) so that
o o

am da Bk are _
o oo * T (=0 (14)

™his equation taken in connection with
enuation 10 shows that the tanrent to the curve
CO coincides with the tanrent to the curve

described by the point M(a,P), at least unless
dn/3a and :/3B are hoth zero, that is, unless the
point Uo(ao,ﬁo) is a sinrular point for the curve

C,o In eeneral, it follows that the curve E{a,2)=

= 0 is composed of two analvitically distinct parts,
one of which is the true envelope, while the other
is the locus of the sinrular points.

In the cases of the Popov inequality mention-
ed above, C(s) is a rational function of s, and
n(a,B,0) = 0 is a polvnomial of desree 2n in w .
Tor any specific pair of values of o and 8 the
eguation

2n "
) oaw =0 (15)
k=0

n(e,Bw) =

where a = ak(ao,Bo) will have renerslly 2n

distinet roots. Throuesh the corresponding point
M(a,B) pass, in reneral, 2n different curves of
the epiven family. But if the point M lies on the
curve E(a,B) = 0, the equations 12 are satisfied
simultaneously, and equation 15 for the chosen
specific values of o and B has a double root, If
only real values of w are considered as it is
required in the Popov ineaualitv, T(a,B) = O




represents the double-real-root-~loci [9,10] of
equation 15,

This result can be readily extended to the
cases when g is not a constant in the Popov
inequality. Then it may become necessary to find
the envelope of a family of curves

m(o,Ry0,0) = 0 (1)
whose equation involves two variables ¢ and w
which themselves satisfv a relation of the form
8(o,w) = 0 (16)
This case can be treated in essentially the
same way as the previous one, 3By the rule
obtained above, we should join with the given
eguation the ecquation obtained by equating to
zero the derivative of its left hand menmber with

respect to o . Thus,
3T A dw
— o S —— =
30 dw do 0 ()

where & is thourht of as a functicn of o defined

by (16)., But from (16) we have also
30 . 30 2w .
U L 3L 8w o )
90 dw do 0 (18)

which torether with ecuations 1 and 16 determine
the required enveloye, The parameters o and w
mey be elirinated between these three ecuations
if desired,

Computer Application

Tt is of interest to obtain the above
reletions in a convenient form for computer

prorsrarmine, Consider, for exarmrle, inequality 1,
where the function ¢ = 6(s) is a rational functicn
of 5 = g+ Ju. From (2), one has
ce Ao C (19)
B ceeeemea—— )
r “y -
2y + J}Q
where
§ n
By=) X , B,=) bY
N B I N 0
(20)
] )
c,=Y % , ¢, =) c¥
1 k=0 kxk 2 120 k'k

¥
This case occurs, for example, when nonlinear

sampled-date svstems are considered, where the
+w2=

equation 16 becomes o2 02, 0<p<1l,
It is also related to the case of nonlinear
continuous svstems in which a damping coefficient

¢t = -0/w is specified,
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and X = Xk(o,w), Yy

defined in reference 20 as

= VP(c,m) are functions

k=2v 2v
w

K K
% =1 (-1)%(2v)e (21)
v=0

.
!

u=l

v

k

k
(-l)u-l(2u _ l)ok-2u+1w?u—l

Tunctions Xk and V. can readily be calculated

¥
from the recurrence formulas

o
v‘)y

Fear = 27 % (Xi * R T 0
(22)
(s}
v - Y.V e veyv =
ka1 2Pt (Yi * Ve =0
where XO =1, Xl_ o,V 7 0, e

If 1/k and q are considered in (1) as the

parameters a and R , respectively, for o = const.
equations 12 become
Uo + VR + V= 0
(23)
Ula + V'R + W' =0
where
2 2
U= Bl + B2
Vo= w(R,Cy - RC) (2b)
U= R G B
and U' = dU/dw, V' = dV/dw, V' = d7/dw, These

derivatives can be cormputed readily by the use
of the recurrence relationship

> w2
' -0 ' v ' v =
Ypap = 2K Xp 4 (K] + VD)X g+ 2V 4= 0
(25)

- 2X =0

() 2]
v vt v=yve AV vV
K+l 1 P09 DRt R

3 k=1

* v 3 3 r v s 4
vhere Xk and k are derivatives of Xk and "y with

respect to w . Fauations 25 are obtained by
differentiating recurrence formulas 22 with
respect to w .

Now, a general computer procram can be
easily obtained for plottine the envelope
E(a,R) = 0 by simply solvine two linear equations
22 for a and R every time the value of w is
chanred, On the basis of the above recurrence
relationships, the prosram can be written for

highesot corder
tions, Then, the proeram for specific situations
needs only the startineg numerical values of the

coefficients 8y bk’ and ¢ .

Aaf rlc) avnertad in +the annliran
cf lg) expected in the applirca




If the inequality 3 is considered with

C(s) + £ D(s)

G(s) = (26)
B(s)
where B 1is an adjustable system perameter, it
is necessary to solve equations 23 in which
_ 2 2
U = Bl + B2
V = BD, +BD, (27)
I = F Y
Y BlCl + 3262
and
n m
D, = % 4 , D,= T 4Y . (28)
T e T O
Ixanple
Consider the inequalitv 3 with
2 o
s+
c = T 24
(s) s>+ 28 + 5+ 1 (29)
and a = 1/k, 0 = 0. 7Tt is necessary to chcose

the parameter R so that o is at minimum,
The parameter plane diaeram is plotted on
1 and the re~ion P(m>0) is determined
followinr the envelope 1. from a tc d.

This exarple was investirated in reference

Tir,

21 for B = 0. Clearly, the minirum of o is

obtained for £ = 0,5 and it lies on the £ axis

whieh allows X to becorme infinite (a=C).
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Fip, 1. Parameter plane diagram
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